On the Mahler Measure of 1+X+1/X+Y +1/Y

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Mahler Measure Of

We prove a conjectured formula relating the Mahler measure of the Laurent polynomial 1 + X + X−1 + Y + Y −1, to the L-series of a conductor 15 elliptic curve.

متن کامل

On the Mahler Measure of 1 + X +

We prove a conjectured formula relating the Mahler measure of the Laurent polynomial 1 + X + X−1 + Y + Y −1 to the L-series of a conductor 15 elliptic curve.

متن کامل

On the Non-archimedean Metric Mahler Measure

Recently, Dubickas and Smyth constructed and examined the metric Mahler measure and the metric näıve height on the multiplicative group of algebraic numbers. We give a non-Archimedean version of the metric Mahler measure, denoted M∞, and prove that M∞(α) = 1 if and only if α is a root of unity. We further show that M∞ defines a projective height on Q × /Tor(Q) as a vector space over Q. Finally,...

متن کامل

On the Mahler measure in several variables

If the total degree of a polynomial in n ≥ 2 variables of dimension n s bounded by a double exponential function in n, we show that its Mahler measure is bounded from below by an absolute constant > 1. 2000 Mathematics Subject Classification 11G50, 11J81, 14G40.

متن کامل

Mahler Measure of Alexander Polynomials

Let l be an oriented link of d components in a homology 3-sphere. For any nonnegative integer q, let l(q) be the link of d−1 components obtained from l by performing 1/q surgery on its dth component ld. The Mahler measure of the multivariable Alexander polynomial ∆l(q) converges to the Mahler measure of ∆l as q goes to infinity, provided that ld has nonzero linking number with some other compon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Mathematics Research Notices

سال: 2013

ISSN: 1687-0247,1073-7928

DOI: 10.1093/imrn/rns285